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Abstract

Image databases on the Web have heterogeneous characteristics since they use different similarity measures and queries are

processed depending on their own schemes. In the content-based image retrieval from distributed sites, it is crucial that the

metaserver has the capability to find objects, similar to a given query object in terms of the global similarity measure, from different

image databases with different local similarity measures. In this paper, we investigate the problem of finding databases, which

contain more objects relevant to a given query than other databases, from many image databases dispersed on the Web. This

problem is referred to as a database selection problem.

We propose a new selection method to determine candidate databases. The selection of databases is based on the hybrid esti-

mator using a few sample objects and compressed histogram information of image databases. Extensive experiments on a large

number of image data demonstrate that our proposed method improves the effectiveness of distributed content-based retrieval in a

heterogeneous environment.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Emerging new multimedia applications, such as dig-

ital libraries, medical diagnostic systems, remote site
education, distributed publishing and electronic com-

merce, need to access information from image databases

distributed at remote locations and process queries in a

distributed manner. Currently, there are a number of

databases on the Web which contain visual objects such

as images and video frames, and it is increasingly im-

portant to retrieve them.

Contrary to the traditional databases such as rela-
tional databases which retrieve relevant tuples to a

query, multimedia databases retrieve visual objects

using the content-based retrieval method called �simi-

larity query�. The similarity query retrieves visual objects

similar to a query object q using the similarity measure.

For example, let simðq; xÞ be the similarity function
which maps the similarity between two visual objects, q

and x, into a real number whose range is ½0; 1�. The

larger the value is, the more similar two objects are.

Then the similarity query is to find a set of objects x to

satisfy simðq; xÞ > T , where T is the threshold value.

We call a similarity query in the distributed envi-

ronment like the Web as �distributed similarity query�.
There are different databases on the Web which have
visual objects. In such an environment, we need meta-

servers in order to handle a distributed similarity query

efficiently. The scenario of the distributed similarity

query on the Web is as follows: A user gives a query with

a query object and a global threshold (GT) to a meta-

server. Then the metaserver sends the user�s query to the

image databases. After the query is evaluated at each
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database, the metaserver merges query results from da-

tabases, and presents them in a sorted order to the user.

If the metaserver searches all databases on the Web

with respect to the user�s query, it will take too much

time to complete the query. To avoid such an exhaustive

process, the metaserver has to provide a way to narrow
down the search scope to a few candidate databases.

This is called �database selection problem�. Until now,

various approaches have been attempted to solve the

database selection problem on text databases while only

a few researches have been made for image databases in

spite of the importance of the image database selection

problem. In the paper, we focus on the image database

selection problem in the distributed environment like the
Web.

1.1. Problem definition

There are various kinds of image databases. In order

to collect image data from them efficiently through a

distributed similarity query, we must know their char-

acteristics and functions well. The difficulty of distrib-
uted similarity search is that these image databases have

different characteristics and functions among them. That

is, they have heterogeneous characteristics and func-

tions. Moreover, they are not designed to be performed

under some predefined network architecture. They have

their own autonomous data management systems. In

order for them to be used for distributed similarity

search by the metaserver, we must resolve the hetero-
geneity and autonomy. Let us start with the discussion

of those characteristics.

Heterogeneity: It is usual that the similarity of two

images is derived from the distance between their feature

vectors in the feature space. A feature vector is defined

for a particular attribute such as color, texture and

shape. Databases in the distributed environment may

have different attributes. In the case of color, there are
various approaches for the color representation such as

the color histogram, the average color, and the major

color (Crane, 1997; Wyszecki and Stiles, 1982). The

color histogram is one of the most widely used visual

features. Various color spaces like RGB, HSV, and

YCbCr can be used to represent the color histogram of

images. The distance between two color feature vectors

is frequently used to measure the color similarity. In
RGB and YCbCr color spaces, the Euclidean distance is

generally used for a distance measure. In HSV color

space, however, the angular distance is used to measure

the color similarity since features in the space are rep-

resented in the form of a corn using the polar coordinate

(Kanai, 1998). It is natural that the image databases at

different sites may have different similarity measures.

Before the queries are performed on the heterogeneous
image databases, the mismatches of the similarity mea-

sures must be resolved.

Autonomy: Most of image databases are autonomous

in their data managements in the context that they are

not designed to be controlled by a certain metaserver.

They may have their own storages and index structures

to store image data, and the summary data to optimize

similarity queries. This summary information is not
provided to the other site, that is, a metaserver. How-

ever, the metaserver must maintain metadata collected

from image databases in order to perform a distributed

similarity query efficiently and effectively. It means we

need the architecture which collects the information

necessary for the query processing from autonomous

image databases. There are various ways to do this. For

example, we force the existing image databases to have
predefined query interfaces in order for a metaserver to

collect the information. Or, the metaserver can send an

agent program to each image database so that the agent

program run a job to collect information from each

image database needed for distributed similarity search.

The autonomous databases with these interfaces or

agent programs are referred to as the semi-autonomous

databases.
Content evolution: The content of databases may

change after some updates. The metaserver must keep

the up-to-date content summary information. Other-

wise, the query to the old content of the metaserver may

leads to wrong answers.

With these considerations, the problem we address in

this paper is how to select image databases which are the

most relevant to a given query from multiple image
databases that are semi-autonomous and heterogeneous.

The term �relevant database� means the database that

has more objects similar to the query object than others.

The term �global similarity measure�means the similarity

measure of the metaserver and the term �local similarity

measure� means that of an image database. Let a

metaserver get a list of image databases dbi (16 i6 S),
sample objects oij (16 j6 n) from each database dbi,
and the compressed histogram information for the se-

lectivity estimation from each database, where S is the

number of image databases and n is the number of

sample objects from dbi. Then, we define the problem in

this paper formally as follows:

• Given: a query object q, the global similarity mea-

sure, a global similarity threshold GT and the num-
ber of image databases M to be selected (M 6 S).

• Target: Select M image databases based on the rele-

vance to q.

1.2. Brief sketch of our method

A metaserver constructs and maintains the summary

information regarding image databases. However, it is
impractical for a single metaserver to collect metadata

from all databases on the Internet in a timely manner.
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Therefore, we consider that several metaservers keep

their own metadata to balance the load and to avoid the

single-point-failure. In this case, we assume that a

metaserver can duplicate and delegate metadata to

others and remove them easily. The focus of this paper,

however, is not the architecture of the Web database but
the database selection. Therefore, we assume that there

exists one metaserver. We also assume that local data-

bases are semi-autonomous, that is, they export content

summaries such as compressed histogram information

and local similarity measures to the metaserver through

the interfaces only. However they do not routinely

provide fetching of sample objects. The metaserver

should use the query interface in order to fetch them
from image databases.

Our approach is composed of two phases: prepro-

cessing and database ranking. A brief sketch of those

phases is illustrated in Fig. 1, and a brief explanation

follows.

Preprocessing phase: The summary information of

image databases is collected background whenever a

new database is registered to the metaserver or a regis-
tered database is updated largely. Multi-dimensional

histograms are generated from image feature data at

image databases in order to estimate the selectivity of

each database for a given query. We use the compressed

histogram information using the discrete cosine trans-

formation (DCT) proposed in Lee et al. (1999) since it

reduces the storage overhead and the network trans-

mission cost. In addition, the metaserver extracts sample
objects using the progressive query-based sampling

method, which slightly modifies the sampling method in

(Callan et al., 1999; Provost et al., 1999), and computes

statistical metadata such as correlation coefficients, the

mean, and the standard deviation from the feature set of

sample objects.

Database ranking phase: To solve the image database

selection problem, we propose a hybrid selectivity esti-
mation method by using a few sample objects and the

histogram information of each image database. The

metaserver captures statistical data on the similarity

distribution of sample objects using the regression

analysis. A given user�s global threshold (GT) is trans-

lated into the local threshold (LT) of each image data-

base using statistical data since image databases use

their own similarity measures in the heterogeneous en-
vironment. The metaserver estimates the result size of a

query on each image database using its histogram in-

formation and LT. The result size of the query estimated

by the local similarity measure of the image database

may be different from that estimated from the global

similarity measure of the metaserver. A sample selec-

tivity compensation (SSC) technique is developed to

compensate for the difference between them using sam-
ple objects. Based on this hybrid estimator, the result

size of the query using GT is estimated, which is the key

criterion to rank and select databases.

1.3. Contribution

The database selection process at a metaserver is an

essential work for efficient retrieval of image data from a
number of remote locations. In this paper, we propose a

user transparent database selection method, based on

the hybrid estimator of the result sizes of the similarity

queries. This method has the following desirable prop-

erties:

(1) It is designed to rank image databases more exactly

from the global similarity measure�s point of view
when the global similarity measure and local similar-

ity measures are different. Different similarity mea-

sures cause the difference of the estimated result

size of a query. To solve this issue, we propose the

SSC technique to compensate for the difference of

the estimated size between them.

(2) It provides an efficient and effective method for esti-

mating the number of relevant objects to the query
by a small size of sample objects and a small number

of DCT coefficients. Therefore, the storage and time

Fig. 1. Overview of the image database selection.
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requirement of a metadatabase is reasonable for

large image databases.

(3) The method can reflect the update at image data-

bases timely. The compressed histogram informa-

tion using DCT is used to keep the up-to-date

information of image databases. Since it is small-
sized even for amulti-dimension and updated dynam-

ically when the images of the database are changed,

it can be transferred to the metaserver from an im-

age database timely, with low transmission cost.

1.4. Paper organizations

The remainder of this paper is organized as follows:
Section 2 provides a survey of related work with a brief

discussion on database selection. In Section 3 we define

simple distance measures and show our observations

about the relationship between heterogeneous similarity

measures. The database selection process is described in

Section 4 with a hybrid scheme to estimate the number

of objects relevant to the query at each image database

and a selection algorithm to determine candidate data-
bases. Section 5 explains the framework of our experi-

ment and presents a series of experimental results. We

give conclusions in Section 6.

2. Related work

A lot of studies have been made for the database
selection problem on text databases (Callan et al., 1995;

Gravano et al., 1994; Gravano and Garcia-Molina,

1995; Meng et al., 1998; Meng et al., 1999; Xu et al.,

1998; Yuwono and Lee, 1997). Gravano et al. (1994,

1995), proposed a keyword-based distributed database

broker system based on a Boolean and vector-space

retrieval model to estimate the number of potentially

relevant documents in a database to a given query.
Callan et al. (1995) presented a probabilistic model of

information retrieval based on the inference network.

Meng et al. (1998, 1999) also proposed methods for

estimating the usefulness of text databases based on the

probabilistic model. These traditional methods for the

text database selection, however, may not be applicable

for image databases since there exists a semantic gap

between vectors of text databases and feature vectors of
image databases.

There are different image databases on the Web such

as QBIC (Flickner et al., 1995), Virage (Bach et al.,

1996), WebSEEk (Smith and Chang, 1997), and Visu-

alSEEk (Smith and Chang, 1996), to name a few. A

recent work for the image database selection was made

by Chang et al. (1998). They proposed mean-based and

histogram-based selection approaches that use the visual
similarity of the query with respect to templates which

are representative images from image clusters in local

databases, and the statistical data of clusters associated

with templates. The mean-based approach uses (1) the

number of samples and (2) the mean and variance of the

similarity distribution of database images with respect to

a template, to determine the likelihood of a cluster to a

given visual query. The histogram-based approach is
based on not only the statistics of the similarity distri-

bution (represented as a histogram) of database images

but the locations of the images within a image cluster.

However, they assume that image databases support the

same feature extraction method and distance function as

the metaserver. Thus, this approach can be used re-

strictively in a realistic environment since most data-

bases on the Web use different similarity measures.
On the other hand, Benitez et al. (1998) proposed a

content-based meta-search engine for images called the

MetaSEEk. Given a visual query, the MetaSEEk ranks

image databases using the historical data of the rele-

vance feedback made by users. However, in this ap-

proach, if a specific database was changed much, the

past information may not be valid anymore since the

historical data is not updated dynamically, which leads
to an incorrect selection of databases.

3. Heterogeneous similarity measures

In this section, we define simple distance measures for

similarity retrieval of large image databases on the Web,

and describe the relationship between the global simi-
larity measure and a local similarity measure by using

various statistical data.

3.1. Distance and similarity

Color histograms are popular methods to represent

the distribution of colors in images where each histo-

gram bin represents a color in one of various color
spaces (RGB, YCbCr, HSV, etc). However, the distance

measure for the color histogram is computationally ex-

pensive during query processing since the histogram

represents a high-dimensional distribution (at least 32 or

64 color bins).

Therefore, we present a low dimensional distance

measure, called the regional average color distance,

which is the function with respect to the distance be-
tween the average color distribution of a region of an

image and that of the corresponding region of another

image. Each image is partitioned into k subimages of an

equal size. Let ~CC ¼ ½~CC1; . . . ; ~CCk� represent the color of an
image and each regional color, ~CCi, be composed of 3� p
matrix whose jth column is the color cij ¼ ½aij; bij; cij�T,
where j ¼ 1; . . . ; p represents a bin number and aij; bij;
cij represent the magnitude of color components (for

example, H, S, V) for the jth bin of the ith region. Given

p-dimensional color histograms of k subimages for each
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of two images, ~xx1; . . . ;~xxk and ~yy1; . . . ;~yyk, 3� 1 regional

average color vectors for the 2k subimages are

~xxavg;i ¼ ~CCi~xxi and ~yyavg;i ¼ ~CCi~yyi for i ¼ 1; . . . ; k

Definition 1. The regional average color distance in

RGB, YCbCr color space is defined as:

d2avg ¼
Xk
i¼1
½~xxavg;i �~yyavg;i�T½~xxavg;i �~yyavg;i�

¼
Xk
i¼1
ðxavg;ai
h

� yavg;aiÞ
2 þ ðxavg;bi � yavg;biÞ

2

þ ðxavg;ci � yavg;ciÞ
2
i

ð1Þ

where ai ¼ ri, bi ¼ gi, ci ¼ bi for RGB color space and

ai ¼ yi, bi ¼ Cbi, ci ¼ Cri for YCbCr color space,

i ¼ 1; . . . ; k.

Definition 2. The regional average color distance in HSV

color space is defined as (Kanai, 1998):

d2
0

avg ¼
Xk
i¼1
½~xxavg;i �~yyavg;i�T½~xxavg;i �~yyavg;i�

¼
Xk
i¼1
ðxavg;vi

�
� yavg;viÞ

2 þ xavg;vi xavg;si cos
xavg;hip

3

� ��
� yavg;vi yavg;si cos

yavg;hip
3

� ��2

þ xavg;vi xavg;si sin
xavg;hip

3

� ��
� yavg;vi yavg;si sin

yavg;hip
3

� ��2
�

ð2Þ

where ~xxavg;i ¼ ðxavg;hi ; xavg;si ; xavg;viÞ, ~yyavg;i ¼ ðyavg;hi ; yavg;si ;
yavg;viÞ, i ¼ 1; . . . ; k.

Note that the regional average color of sample objects

can be precomputed in the preprocessing phase and then

organized easily into a metadatabase. Furthermore, the
regional average color distance is the lower bound on

the histogram distance measure (Hafner et al., 1995).

Therefore, it, as a cheaper distance measure, can be used

to rank relevant databases to the query without any

false dismissal.

The regional average color distance is converted into

the similarity using the inter-feature normalization

technique suggested in MARS (Ortega et al., 1998). A
brief description is as follows:

(a) Compute the distance between all pairs of sample

images.

(b) Calculate and store the mean l
 and the standard

deviation r
 of distances.
(c) Calculate distance values between database images

and a given query image.
(d) Apply the Gaussian normalization to the distance

values obtained in (c) using l
 and r
 so that 99 per-

cent of distance values fall in the range ½�1; 1�. Let
d be one of these values.

(e) Let s ¼ ðd þ 1Þ=2 in order to map d to a value

ranged ½0; 1�.
(f) Then similarity ¼ 1� s.

3.2. Relationship between similarity measures

Two similarity terms, global and local, are formally

defined as follows:

Definition 3. The global similarity, simglobalðq; oÞ, is de-

fined as the similarity value between a query image q and
an image o that is calculated by the similarity measure of
the metaserver. The local similarity, simlocaliðq; oÞ, is de-
fined as the similarity value between a query image q and
an image o calculated by the similarity measure of an

image database dbi.

Since databases on the Web are heterogeneous, their

feature extracting methods and distance functions may

be different and so do the similarity measures, although
their attributes used in the similarity search are the

same. Therefore the local similarity value between a

query image and an image object is different from the

global similarity value between them. Following three

examples illustrate this:

Example 1. The metaserver and the image database

support the similarity search using the color attribute.
The metaserver extracts average color features from the

color histogram in HSV color space while the image

database extracts them in RGB color space. The meta-

server measures its similarity value against a query im-

age as the image database does. Fig. 2(a) shows the

scatter diagram of global similarity values (y-coordi-
nate) and local similarity values (x-coordinate) for 4716
pairs of images selected from the set of 4716 images.
Each of 4716 images is selected as the first element of a

pair, and the second element of the pair is selected ar-

bitrarily among 4716 images. In this case, the diagram

shows that the shape of a graph is a straight line. Fig.

2(b) shows the diagram for the case that the image

database extracts average color features from the color

histogram in YCbCr color space and measures its sim-

ilarity value as the metaserver does.

Example 2. The metaserver and the image database

support the similarity search using the texture attribute.

The metaserver extracts texture features from second

moment of the color histogram in HSV color space

while the image database extracts them in RGB color

space. The metaserver measures its similarity value

against a query image as the image database does. The
scatter diagram of the global similarity values (y-coor-
dinate) and the local similarity values (x-coordinate) for
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4716 images is shown in Fig. 3(a). The diagram shows

the shape of a straight line. Fig. 3(b) shows the diagram

for the case that the image database extracts texture
features from second moment of the color histogram in

YCbCr color space and measures its similarity value as

the metaserver does.

Example 3. In Fig. 4(a), the similarity values of the y-
coordinate are obtained using the average color from

the color histogram in HSV color space while those of

the x-coordinate are obtained using the texture ex-
tracted from second moment of the color histogram in

RGB color space. Contrary to the previous cases, the

scatter diagram does not show any relationship between

two similarity measures with different attributes. Fig.

4(b) shows the diagram for the case that the image

database extracts texture features from second moment

of the color histogram in YCbCr color space and mea-

sures its similarity value as the metaserver does.

Observation 1. Although similarity measures are differ-

ent between the metaserver and image databases, the

scatter diagrams of similarity values of some pairs of

similarity measures show the shape of a straight line.

Since we cannot prove that two different similarity

measures with the same attribute shows the linear rela-
tionship, we have made extensive experiments that show

various cases that satisfy the linear relationship.

The statistical linear regression method is used to

obtain the equation of a straight line and the test of

statistical hypothesis is used to verify the linear rela-

Fig. 2. Scatter-diagram of similarity values for different color features. Scatter-diagram of (a) average color in RGB space vs. average color in HSV

space and (b) average color in YCbCr space vs. average color in HSV space.

Fig. 3. Scatter-diagram of similarity values for different texture features. Scatter-diagram of (a) texture in RGB space vs. texture in HSV space and

(b) texture in YCbCr space vs. texture in HSV space.

Fig. 4. Scatter-diagram of similarity values for color and texture features. Scatter-diagram of (a) average color in HSV space vs. texture in RGB space

and (b) average color in HSV space vs. texture in YCbCr space.
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tionship between two similarity measures. As test indi-

cators, we used the scatter diagram, the sample coeffi-

cient of determination (r2), and the analysis of variance

(F0, F ðaÞ) where r2 is given by (sum of squares due to

linear regression)/(total variance), F0 is given by (mean
square due to linear regression)/(mean square of resid-

ual), F ðaÞ is obtained from F-distribution for a level of

significance a. If the linear regression model is effective

for two similarity measures, the scatter diagram must

show the shape of a straight line, r2 (06 r2 6 1) must be

near to 1 and F0 must be larger than F ðaÞ (Hillier and

Lieberman, 1977; Park, 1985). Table 1 describes features

and distance functions to be used in these experiments.
There are two groups of features: feat1–feat3 are aver-

age color features, feat4–feat6 are texture features.

Table 2 shows the result of experiments for two

similarity measures when similarity values are measured

for pairs of images. We made two kinds of pairs of

features: one is that two features are chosen from the

same group, the other is that two features are chosen

from different groups.
Since the similarity search is performed for a given

query objects, we experimented for the case in which

similarity values are measured between a fixed query

image and arbitrary images. Table 3 shows the com-

parison of the case in which similarity values are

measured for pairs of images and the case in which

similarity values are measured for a fixed query image

and arbitrary images. In Table 3, q is a correlation of the

distribution and b0, b1 are the statistical values used in
the linear regression line y ¼ b0 þ b1x. As shown in

Table 2, in the case of similarity measures from the same

group, the scatter diagram shows the shape of a straight

line, r2 value is near to 1, and F0 is much larger than

F ðaÞ.
However, in the case of similarity measures from

different groups, the scatter diagram does not show the

shape of a straight line and r2 value is near to 0. And F0
in this case is much smaller than F0 of the case that the

linear relationship is satisfied even though F0 is larger

than F ðaÞ. In this case, we can say that two similarity

measures do not satisfy the linear relationship. As

shown in Table 3, we can observe the fact that there are

no severe difference between the case that similarity

values are measured for arbitrary pairs of images and

the case that similarity values are measured for a fixed
given query image and arbitrary images.

For any two similarity measures, if they satisfy the

linear relationship, we can use that property for the

distributed similarity search.

4. Database selection

In this section, we present our proposed hybrid esti-

mation method for ranking databases and choosing

candidate databases to submit a query q. Table 4 sum-

marizes the notation used in our database selection ap-
proach.

4.1. Hybrid estimator

We are interested in identifying ‘‘good candidate’’

databases, which produce large result sizes with respect

to a query. Therefore, we focus on estimating result sizes

of the query from image databases that use heteroge-
neous similarity measures. Let Ii be the set of images in

the ith image database.

Table 2

Test of statistical hypothesis for linear regression between two similarity measures using different features and distance functions

Features Scatter diagram Correlation, q r2 F0 F (0.05) Result

Feat1:Feat2 Straight line 0.9711 0.943 78 046 0.000 Linear

Feat1:Feat3 Straight line 0.9814 0.963 123 486 0.000 Linear

Feat2:Feat3 Straight line 0.9498 0.902 43 504 0.000 Linear

Feat1:Feat4 Scattered 0.0623 0.004 18.346 0.000 Non-linear

Feat2:Feat5 Scattered 0.0115 0.001 0.629 0.428 Non-linear

Feat4:Feat5 Straight line 0.8830 0.780 16 680 0.000 Linear

Feat4:Feat6 Straight line 0.9153 0.838 24 331 0.000 Linear

Feat5:Feat6 Straight line 0.9544 0.911 48 239 0.000 Linear

Table 1

The description of features to be used in similarity measures

Feature name Feature description

Color feature Feat1 Average color feature from histogram in

RGB color space and the Euclidean

distance function is used.

Feat2 Average color feature from histogram in

HSV color space and the angular dis-

tance function is used.

Feat3 Average color feature from histogram in

YCbCr color space and the Euclidean

distance function is used.

Texture feature Feat4 Texture feature from histogram in RGB

color space and the Euclidean distance

function is used.

Feat5 Texture feature from histogram in HSV

color space and the angular distance

function is used.

Feat6 Texture feature from histogram in

YCbCr color space and the Euclidean

distance function is used.
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Definition 4. The global query result size of the ith image

database for q and GT, gnumðdbi; q;GTÞ, is defined as

follows:

gnumðdbi; q;GTÞ ¼ jfo 2 Iijsimglobalðq; oÞPGTgj ð3Þ

Definition 5. The local query result size of the ith image

database for q and LTi, lnumðdbi; q;LTiÞ, is defined as

follows:

lnumðdbi; q;LTiÞ ¼ jfo 2 Iijsimlocaliðq; oÞPLTgj ð4Þ

Definition 6. The global query selectivity of the ith image

database for q and GT, gselðdbi; q;GTÞ is defined as

follows:

gselðdbi; q;GTÞ ¼ gnumðdbi; q;GTÞ=jIij ð5Þ
where jIij is the number of objects in database dbi.

Definition 7. The local query selectivity of the ith image

database for q and LTi, lselðdbi; q;LTiÞ, is defined as

follows:

lselðdbi; q;LTiÞ ¼ lnumðdbi; q;LTiÞ=jIij ð6Þ

The ideal rank of databases is then determined

by sorting databases according to their gnumðdbi; q;
GTÞ for a query q. But the computation of gnumðdbi;
q;GTÞ may not be possible because an image data-

base does not provide a histogram for global features

but for local features. Therefore we need to compen-
sate for the difference between gnumðdbi; q;GTÞ and

lnumðdbi; q;LTiÞ. To do that, we introduce two selec-

tivity compensations as follows:

Definition 8. Population selectivity compensation ðPSCiÞ
of the ith image database

PSCiðdbi; q;GTÞ ¼ gselðdbi; q;GTÞ � lselðdbi; q;LTiÞ
ð7Þ

However, we cannot compute an exact value of PSCi.
Instead, we define the Sample Selectivity Compensation

to estimate PSCi.

Definition 9. Sample selectivity compensation ðSSCi;nÞ of
the ith image database.

Let gselsample;nðdbi; q;GTÞ denote a global query se-

lectivity estimated using random samples of size n and

Table 3

Comparison of the case in which the similarity is measured for pairs of images and the case in which the similarity is measured between a fixed query

image and an arbitrary one

q b0 b1 r2 F0 F (0.05)

Feat1:Feat2

Pairs of images 0.971 0.0003 1.007 0.943 78 046 0.000

Fixed query1 0.969 )0.037 1.069 0.939 72 015 0.000

Fixed query2 0.991 )0.020 0.987 0.982 256 073 0.000

Fixed query3 0.971 )0.029 1.061 0.942 77 141 0.000

Fixed query4 0.975 0.010 1.001 0.950 90 441 0.000

Fixed query5 0.913 0.056 0.870 0.833 23 537 0.000

Feat2:Feat3

Pairs of images 0.950 0.242 0.949 0.902 43 504 0.000

Fixed query1 0.912 0.083 0.877 0.832 23 281 0.000

Fixed query2 0.972 0.065 0.882 0.945 80 463 0.000

Fixed query3 0.971 )0.029 1.061 0.942 77 141 0.000

Fixed query4 0.948 0.025 0.986 0.899 41 970 0.000

Fixed query5 0.934 0.046 0.950 0.872 32 231 0.000

Feat4:Feat5

Pairs of images 0.883 0.036 0.930 0.780 16 680 0.000

Fixed query1 0.826 0.122 0.695 0.682 10 131 0.000

Fixed query2 0.963 0.044 0.999 0.928 60 417 0.000

Fixed query3 0.856 0.072 0.900 0.732 12 869 0.000

Fixed query4 0.862 0.034 0.985 0.743 13 612 0.000

Fixed query5 0.896 0.069 0.912 0.802 19 129 0.000

Table 4

Notations used in database selection

Symbol Meaning

DB A set of all image databases¼fdb1; . . . ; dbsg
dbi The ith image database

q Query

M Number of databases to be selected

GT Global threshold that a user specifies

LTi Local threshold of the ith image database corresponding

to GT

n Number of random sample objects

y Global similarity value

x Local similarity value

138 D.-H. Kim et al. / The Journal of Systems and Software 64 (2002) 131–149



lselsample;nðdbi; q;LTiÞ denote a local query selectivity

estimated using random samples of size n. GT and LTi
holds a linear relation of GT ¼ baiai þ bbibi � LTi which is

obtained using the linear regression analysis for the

local similarity and the global similarity of sample ob-

jects. SSCi;n is defined as an offset value to compensate
for the difference between gselsample;nðdbi; q;GTÞ and

lselsample;nðdbi; q;LTiÞ of a query q.

SSCi;nðdbi; q;GTÞ ¼ gselsample;nðdbi; q;GTÞ
� lselsample;nðdbi; q;LTiÞ ð8Þ

Let lsel0ðdbi; q;LTiÞ be the local query selectivity esti-

mated using the histogram information of the image
database dbi. Then, the estimated global query selec-

tivity of dbi, gsel
0, for q can be obtained from the hybrid

estimator as follows:

gsel0ðdbi; q;GTÞ ¼ lsel0ðdbi; q;LTiÞ þ SSCnðdbi; q;GTÞ
ð9Þ

Likewise, the estimated global query result size of

dbi; gnum
0, for q as follows:

gnum0ðdbi; q;GTÞ ¼ gsel0ðdbi; q;GTÞ � jIij ð10Þ
gsel0ðdbi; q;GTÞ and gnum0ðdbi; q;GTÞ are used as ap-

proximations of gselðdbi; q;GTÞ and gnumðdbi; q;GTÞ,
respectively.

4.2. Database histogram information

In order to select image databases relevant to a given

query, we need histograms to estimate the result sizes of

the query for image databases. For image databases, the

multi-dimensional histograms are constructed from the

feature vectors of image objects. Feature values of an

object o in image database dbi are values in a real data

space ½�1;1�. But the histogram information as the

content summary of image database dbi is generated in
the normalized data space ½0; 1�p with dimension p.
Therefore, in order to construct the histogram infor-

mation, the feature data in each database should be

normalized as follows:

For an object o, let F ¼ ff1; f2; . . . ; fk; . . . ; fpg be the

corresponding p dimensional feature vector, where fk is
the k-th feature value in feature vector F. If there are N
objects in database dbi, N � p feature matrix I can be
formed. Each column Ik of I is a set of k-th feature

values of length N. Assuming that the set Ik has a

normal distribution, we can compute the mean mk and

the standard deviation rk of the set Ik. Then we perform

the intra-feature normalization (Ortega et al., 1998) for

feature vectors with the dimension p. It is formulated as

follows:

f 0k ¼
fk�mk
3rk
þ 1

2
ð11Þ

According to the above formula, the probability that a

feature value falls in the range [0, 1] is approximately 99

percent. The parameters m1;m2; . . . ;mk; . . . ;mp and

r1; r2; . . . ; rk; . . . ; rp are stored as metadata. They can be

used to transform points in the real data space into

corresponding points in the normalized data space. In
order to construct the histogram information of HSV

color features, we transform features in the polar coor-

dinate system into those in the rectangular coordinate

system.

Then the normalized data space is partitioned into

several rectangular buckets and the frequency values

associated with the buckets are compressed using DCT

technique. The DCT coefficients are referred to as his-
togram information.

It is important to keep the up-to-date information of

image databases. When the number of data updates

reaches a certain threshold, histograms should be re-

constructed entirely since their accuracy become low. In

contrast, our database histogram method can reflect

dynamic data updates with reasonable overhead since

the linearity property of DCT enables this by processing
only the update data (Lee et al., 1999). When the

number of inserted objects reaches a certain threshold,

the values of DCT coefficients for the inserted objects

only are computed, transferred to the metaserver and

then added into the existing DCT coefficients of the

database histogram.

4.3. Selectivity estimation using compressed histogram

information

Lee et al. (1999) proposed the multi-dimensional se-

lectivity estimation method for a rectangular range

query. The method is briefly described below. Let qp be a
p-dimensional rectangular range query. We assume the

data space is normalized as ð0; 1Þp. The range of the

query qp is ai6 xi6 bi for 16 i6 p and xi coordinate is
divided into Ni partitions.

Lemma 1. Let f be a function which is represented using
the inverse DCT function. The selectivity of the p-di-
mensional query whose range is represented as the hyper-
rectangle is expressed as follows:

Selectivity of a query qp

¼
Z bp

ap

� � �
Z b2

a2

Z b1

a1

f ðx1; x2; . . . ; xpÞdx1 dx2 � � � dxp
ð12Þ

¼

ffiffiffiffiffi
2

N1

s
� � �

ffiffiffiffiffi
2

Np

s X
gðu1;...;upÞ2Z

ku1 � � � kupgðu1; . . . ; upÞ

�
Z b1

a1

cosðu1px1Þdx1 � � �
Z bp

ap

cosðuppxpÞdxp ð13Þ
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where Z is the set of selected coefficients from zonal
sampling, and gðu1; . . . ; upÞ is a p-dimensional DCT co-
efficient, and

kui ¼
1ffiffi
2
p for ui ¼ 0 ui ¼ 0; . . . ;Ni � 1

1 for ui 6¼ 0

�

4.4. Selectivity estimation for the spherical similarity

query

In image databases, the similarity query can be rep-

resented as a hyper-sphere in the real data space. Since

the method of Section 4.3 can estimate only the selec-
tivity of a rectangular query, the hyper-sphere of a query

q should be approximated into the hyper-rectangle(s) in

the real data space. In this section, we describe two se-

lectivity estimation techniques, based on the histogram

information using DCT, to estimate the result size of a

spherical similarity query as follows:

Single rectangle approximation (SRA): The selectivity

of a query q can be obtained from the selectivity of the
hyper-rectangle which has the same volume and center

as the hyper-sphere of query q. An approximated hyper-

rectangle is plotted in Fig. 5, i.e., the dotted rectangle.

Multiple rectangle approximation (MRA): It generates

v hyper-rectangles, Ri, i ¼ 1; . . . ; v, within the hyper-

sphere whose center is ð0; . . . ; 0Þ and radius 1 in ad-

vance. To generate hyper-rectangles efficiently, we give

the condition that an overlapped region is made from at
most two hyper-rectangles. an overlapped area is re-

garded as another hyper-rectangle. Let si be the selec-

tivity of hyper-rectangle Ri, ki ¼ (the volume of the

common region of Ri and the hyper-sphere)/(the volume

of Ri) and q ¼(the volume of the hyper-sphere)/(the total

volume of inner regions of Ri). We adjust ki value of a

new rectangle to be more than a predefined value s. In
our experiment, we empirically choose s to be 0.7 in
three dimension or 0.5 in six dimension since the MRA

technique performs well with these ratios. These hyper-

rectangles are scaled and transformed properly to locate

them within the query range and the selectivity of each

hyper-rectangle, si, q and ki is computed. Then the se-

lectivity of q is q
Pv

i¼1 siki.

In both cases, the volume of the hyper-sphere or the

volume of the common region of the hyper-rectangle

and the hyper-sphere should be calculated. However, it

is difficult to compute analytically the volume of the

hyper-sphere in a real data space since the boundary

effect (Berchtold et al., 1997) may occur. In this case, we
can calculate the volume approximately by applying the

Monte-Carlo method (Kalos and WhitRock, 1986) as

follows: the volume of the hyper-sphere¼ the volume of

the hyper-rectangle circumscribing the hyper-sphere�
(the number of random points within the hyper-sphere/

the total number of random points in the hyper-rect-

angle).

The histogram information for an image databases is
generated in the normalized data space ½0; 1�p where p is
the dimension of the feature vector of an image data-

base. As shown in Fig. 5, therefore, the hyper-sphere

and the hyper-rectangle in the real data space must be

transformed into the hyper-oval and the hyper-rectan-

gle, respectively, in the normalized data space by using

Equation (11). Then the selectivity of the spherical

similarity query can be estimated using Equation (13).

4.5. Sample selectivity compensation

Different similarity measures cause the difference

Diff i between gnumðdbi; q;GTÞ and lnum ðdbi, q;LTiÞ.
In order to estimate Diff i, PSCiðdbi; q;GTÞ in Equation

(7) can be used. But PSCi cannot be computed at the

metaserver. Instead, we fetch sample objects from image
databases to the metaserver, extract their features, and

compute SSCi;n. To do it, we use the progressive query-
based samplingmethod in the preprocessing phase. It is a

method to acquire samples from an image database

across the Internet without special cooperation between

the metaserver and the image database. We assume that

a metaserver can issue range queries to each database to

retrieve images. Although random sampling is not pos-
sible, it can be approximated with queries carefully se-

lected either from SAMP or QP, where SAMP is a set of

collected objects obtained by using the progressive

query-based sampling and QP is a temporary query pool

with randomly selected objects either from a metaserver

Fig. 5. Real data space and normalized data space.
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or other image databases ðjQPj > 30Þ. The objects in QP

are selected such that they are uniformly distributed in

the feature space. A detailed sampling algorithm for an

image database is as follows:

(1) Select an initial query object randomly from QP;
SAMP /; n 0.

(2) Submit the query object to the ith image database.

(3) Retrieve objects from the ith image database using a

range query, and select randomly d samples among

retrieved objects such that d is 10% of retrieved ob-

jects, and then add them to SAMP.

(4) Replace QP with SAMP if the number of sample ob-

jects in SAMP is sufficiently large.
(5) Calculate a stopping criterion value based on the

characteristics of the retrieved objects.

(6) If a stopping criterion has not been reached yet,

(a) Select a new query object from QP; n nþ d;
and

(b) Go to Step (2).

The algorithm involves two important issues such as
how to select query objects (from Step (1) to Step (4)),

and when to stop collecting samples from a database

(from Step (5) to Step (6)). The distribution of the

population should be learned and query objects should

be selected carefully in order to provide random samples

of images.

In Step (1), a query object is randomly selected from

QP since QP has a uniform distribution, that is, the
objects in QP can evenly cover the data space of an

image database. In Step (3), the metaserver retrieves

objects from the ith image database using a range query,

and selects randomly 10% samples among the retrieved

objects, and then adds them to SAMP. Then d is in

proportion to the density of the given query region. A

range query retrieves many objects from the dense area

while it retrieves a few objects from the sparse area of
the population. A sample set SAMP learns progressively

the distribution of the whole data set according to re-

trieved objects by repeating a range query using a ran-

domly selected query object from QP. In Step (4), the

query object is randomly selected from QP until the size

of the sample set SAMP becomes sufficiently large (for

example, jSAMPj > 30). Initially, samples in SAMP

would be biased strongly in the feature space since they
are collected from a few query objects. A solution is to

select query objects from a uniform temporary query

pool QP in order to get a more random set of query

objects. When the size of the sample set SAMP becomes

sufficiently large, a random query object can be selected

from SAMP since SAMP has approximately learned the

data distribution of an image database.

In Steps (5) and (6), a stopping criterion is evaluated to
decide when the learned sample set SAMP is sufficiently

accurate and the improving rate of the accuracy of SSCi;n

becomes very small. As for the accuracy of SAMP, the

whole data distribution can be estimated from the com-

pressed histogram information of each database. For the

computational efficiency, we assume that dense areas in

the data space can be found by inspecting the frequency

values of all buckets in the compressed histogram infor-
mation of the ith database.We use the range of the bucket

whose frequency value is close to the average of histo-

gram frequency values as a target range for estimating the

accuracy of SAMP. Let the sample size be n, the database
size be N, the sample frequency of the target range be nt,
and the histogram frequency of the same range be Nt,

respectively. If the sample frequency ratio nt=n of the

target range is sufficiently similar to the histogram fre-
quency ratio Nt=N of the same range, it is reasonable to

conclude that the learned sample set is not biased.

On the other hand, we have to show that SSCi;n
converges to PSCi to show the accuracy of the estima-

tion method using SSCi;n.

In order to compute SSCi;n of a query using sample

objects of size n from the ith image database dbi, the

statistical metadata such as sample regression line co-
efficients (âa; b̂b), and the sample coefficient of determi-

nation(r2) are used. As shown in Fig. 6, we can estimate

the regression line, EðyjxÞ ¼ âaþ b̂bx, from the bivariate

distribution of the local similarity value x and the global

similarity value y of a given query using sample objects.

Let the points ðxi;EðyjxiÞÞ, i ¼ 1; . . . ; n on the esti-

mated regression line be threshold points. The following

lemmas and theorem show that SSCi;n converges to a
constant value as the sample size n increases.

Lemma 2. The local query selectivity estimated using
random samples of size n with the local similarity
threshold x converges stochastically to the local query
selectivity estimated using all objects in dbi as the sample
size n increases.

Lemma 3. The global query selectivity estimated using
random samples of size n with the global similarity
threshold ŷyð¼ EðyjxÞÞ converges stochastically to the
global query selectivity estimated using all objects in dbi
as the sample size n increases.

Fig. 6. Regression line.
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Theorem 1. For a given query, SSCi;nðdbi; q;EðyjxÞÞ with
threshold point ðx;EðyjxÞÞ converges stochastically to
PSCi as the sample size n increases.

The proofs of the above lemmas and theorem can be

found in Appendix A. Now, let us explain how to de-
termine the size n of sample objects. Since SSCi;n con-

verges to PSCi as n increases, both SSCi;n and SSCi;nþd

are close to PSCi when SSCi;n is sufficiently accurate.

Actually, we choose n when jSSCi;n � SSCi;nþdj=
jSSCi;nj6 0:1. As the sample coefficient of determination

r2 becomes high enough, we can observe the following:

Observation 2. If r2 ð06 r2 6 1Þ is the sample coefficient
of determination in the bivariate distribution of the

global similarity value and the local similarity value with

respect to a query, Fig. 7 illustrates that SSCi;n decreases

as r2 increases. It means that lnumðdbi; q;LTÞ is getting
close to gnumðdbi; q;GTÞ.

4.6. Database ranking algorithm

Our proposed database selection criteria is as follows:

Select top M databases in a ranked list Gðq;GTÞ ¼
ðdbg1 ; dbg2 ; . . . ; dbgS Þ where Gðq;GTÞ is ranked accord-

ing to their estimated global query result size

gnum0ðdbi; q;GTÞ for a qiven query q.

Algorithm Database_Ranking (q,GT,DB)

(1) for each dbi 2 DB, i ¼ 1; . . . ; S;
(2) get ŷy ¼ âaþ b̂bx using the linear regression analysis;

(3) calculate SSCi;nðdbi; q;GTÞ using the sample objects

of the size n;
(4) LTi ¼ ðGT � âaÞ=b̂b;
(5) compute the estimated local query selectivity,

lsel0ðdbi; q; LT Þ, using the histogram information;
(6) gsel0ðdbi; q;GTÞ ¼ lsel0ðdbi; q; LTiÞ þ SSCi;nðdbi; q;

GTÞ;
(7) gnum0ðdbi; q;GTÞ ¼ gsel0ðdbi; q;GTÞ � jIij;
(8) end for

(9) Rank databases according to gnum0ðdbi; q;GTÞ.

In Steps (2) and (3), the run time of the regression

analysis and calculating SSCi;nðdbi; q;GTÞ will be pro-

portional to the number of sample objects, n, for each

database. Let p be the dimension, a be the computation

time of the sin function, and z be the number of DCT

coefficients. v rectangles are used for MRA. Since the
selectivity computation time of the rectangular range

query is obtained as 2paz from Eq. (13), the run time

complexity of computing lsel0ðdbi; q;LTiÞ, in Step (5), is

given by Oðv2pazÞ when MRA is used or Oð2pazÞ when
SRA is used. Then the complexity of the algorithm is

OðSðnþ v2pazÞÞ for a set of S databases when n sample

objects and MRA are used.

4.7. Pure sampling-based method

Our proposed database selection method is regarded

as the method using an hybrid estimator, since it uses

the histogram information together with a small number

of sample objects.

As an alternative to estimate the result size of a query

according to the global similarity measure, the pure
sampling-based estimator can be used. It ranks data-

bases by using only gselsample;nðdbi; q;GTÞ. It provides a
reasonable size estimation for any data distributions and

its accuracy for the size estimation becomes high in

proportion to the amount of samples taken. There is a

trade-off between the estimation accuracy and the

amount of samples.

Fig. 8 depicts the relationship between the sample size
and the accuracy of the size estimation. The horizontal

axis represents the number of samples. N is the total

number of available objects in an image database. The

vertical axis represents the accuracy of the size estima-

tion when a sample set of size n is given.

The pure sampling-based method incurs the run-time

cost for sampling since the random sampling occurs in

the query processing time, and requires more storage of
the metadatabase since it needs a sufficient size of

samples so as to achieve high accuracy of the size esti-

Fig. 7. SSCi;n on threshold points. Fig. 8. Learning curves and progressive samples.
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mation. Even though the proposed method uses a small

size of samples(nmin 1), it can achieve higher accuracy

than the pure sampling-based method. We use the pro-

gressive query-based sampling in the preprocessing

phase since the sampling through Internet incurs high

cost. The experimental results are shown in Fig. 11 of
Section 5.2.

5. Experiments

In order to measure the effectiveness of our proposed

method, we have conducted comprehensive experiments

over a large number of image data and various queries.
Our experiments focus on showing the accuracy of the

selection method to rank image databases with respect

to a given query. The system is written in Microsoft

VC++ under Windows NT, on the HP NetServer.

5.1. Experimental framework

The test data consists of 83 476 images with 256-color
bitmaps. We constructed 10 image databases based on a

semantic categorization since visual databases usually

contain particular types of images. Each database uses a

different feature extraction method and a different dis-

tance function. To acquire visual features that charac-

terize images, we extracted the average color and texture

from various color spaces using a color histogram

method. For each image, the average color (l1, l2, l3) is
used to represent the average intensity of each color

component and the texture (r1, r2, r3) is used to rep-

resent the relative smoothness of each color component.

In our experiments, we use the average color and texture

in HSV color space as the features of the metaserver.

Table 5 shows feature extraction methods, database si-

zes, and semantic categories for all image databases. The

experiments for the database selection are conducted by
varying the parameters in Table 6.

5.2. Experimental results

Our experiments include the comparison of two

rectangle approximation techniques used for the hybrid

estimator: SRA and MRA. We have executed 30 queries

for each test using various parameters and averaged
their results. When the linear regression is performed,

99.9% confidence level is used to estimate the prediction

interval of the global similarity y. For MRA, we gen-

erate 13 small hyper-rectangles to approximate a normal

hyper-sphere in advance. We first observe an appropri-

ate number of sample objects, which provides a suffi-

ciently accurate global selectivity estimation. To

measure the accuracy, the relative error (E) is defined as
follows:

E ¼ jquery result size� estimated result sizej
query result size

� 100%

Fig. 9(a) and (b) shows the relative error of SRA and

MRA for D ¼ 3 and D ¼ 6, respectively. We use the

same databases (sites 4, 7, and 9) but different similarity

measures (RGB, YCbCr, HSV color spaces). We can
observe that the relative error of SRA-YCbCr is 12.5–

16.2% for D ¼ 3 and 24–26.5% for D ¼ 6 and that of

MRA-YCbCr is 2.8–6.6% for D ¼ 3 and 9.5–14.7% for

D ¼ 6. The relative error of MRA for the same range of

the sample ratio (SR) shows better results than that of

SRA for D ¼ 3, 6. The relative error of SRA-HSV

shows constantly 14.2% and 29.9% in the whole range

because the global similarity measure is the same as the
local one (HSV color space) and, therefore, SSC ¼ 0 for

the whole range. The experiments also illustrate that the

relative errors change little as the SR increases above

1.1%. Consequently, we will fix the SR to 1.1% for the

next experiments.

Fig. 10(a)–(d) show the results of the sample selec-

tivity compensation(SSCi;n) for given four queries. We

can observe that SSCi;n fluctuates when the SR is very

Table 5

The test data set environment

Sites Feature extraction methods Size Semantic categories

1 Average color/texture in

RGB color space

8888 Scene, photo

2 Average color/texture in

RGB color space

8819 Animal, zoo collection

3 Average color/texture in

HSV color space

8526 Art and design

4 Average color/texture in

RGB color space

8328 Background, pattern

5 Average color/texture in

YCbCr color space

7940 Flower, plant

6 Average color/texture in

YCbCr color space

7835 Clip art

7 Average color/texture in

YCbCr color space

8328 Background, pattern

8 Average color/texture in

HSV color space

9908 People

9 Average color/texture in

HSV color space

8328 Background, pattern

10 Average color/texture in

YCbCr color space

8819 Animal, zoo collection

Table 6

Test parameters for database selection

Parameter Meaning

Dimension D Dimension of image features (D ¼ 3, 6 are used)

SR Number of sample objects divided by the total

number of objects in an image database

(SR¼ 0.1–4.4%)

M Number of databases to be selected

(M ¼ 1; 2; . . . ; 10)

Threshold T Range of GT values (T ¼ 0:7, 0.6, 0.5 are used)
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small but SSCi;n converges stochastically to a constant

value when the SR increases. The result shows that we

can significantly offset the difference between the global

and local selectivities utilizing SSCi;n when the SR is

larger than 1.1%.

We also conducted comprehensive experiments to
compare (1) the pure sampling-based method and (2) the

histogram-based method and (3) proposed two hybrid

methods (SRAþ SSC, MRAþ SSC) in order to mea-

sure the accuracy and efficiency of the proposed method

in estimating the result sizes of queries. Fig. 11 shows

that,as compared with pure sampling-based method, the

accuracy for estimation of the result size of the query

can be significantly improved by the hybrid methods

even when the sample size is small. The result also shows

that the hybrid methods can make a substantial saving

in the sample size for the same accuracy.
In order to illustrate that the progressive query-based

sampling method provides unbiased samples, we com-

pared the distribution of the whole data set with that of

the samples in Fig. 12. The color features of images are

represented in the 3 dimensional data space. To visualize

Fig. 11. Accuracy (a) for database 6 and (b) for database 2.

Fig. 10. SSCi;n: (a) SSC4;n for query 1, (b) SSC4;n for query 2, (c) SSC4;n for query 3 and (d) SSC4;n for query 4.

Fig. 9. Relative error (a) for D ¼ 3 and (b) for D ¼ 6.
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them, we use R, G values. Fig. 12(a) shows the scatter

diagram of R values (x-coordinate) and G values (y-
coordinate) for the whole data set of site 4 (8328 im-

ages). Fig. 12(b) shows the diagram for samples that are

extracted from the same database using the progressive

query-based sampling method. When a SR is 1.1%, the

experimental result shows that the samples are not bi-

ased.
We examine the performance of the proposed data-

base selection method. Two performance measures are

used. First, the ranking order error (E0) for test queries
is used to compare the ranks returned by the pro-

posed method against the ideal ranks (Callan et al.,

1995). The ideal ranks of each database are deter-

mined by measuring the global similarity between a

given query and each database image. The ranking order
error for the test query qj is calculated as follows: E0j ¼
ð1=jGjÞ

P
dbi2GðIRi;j � ERi;jÞ2 where IRi;j is the ideal

rank of the database dbi based on the actual result size

for qj, ERi;j is the estimated rank of dbi determined by

the ranking algorithm for qj, and G is the set of data-

bases selected by the proposed database selection

method. Given k test queries q1; q2; . . . ; qk, E0 is com-

puted by the expression E0 ¼ ð1=kÞ
Pk

j¼1 E
0
j. Second, the

relative performance (P) derives the accuracy of the

database selection method by computing the ratio be-

tween the result size of the global queries returned by the

database selection method and that returned by the ideal

choices of databases. Formally, the relative performance

Pj contributed by a test query qj (16 j6 k) is defined as:

Pj¼
P

dbi2G gnumðdbi;qj;GTÞ=
P

dbi2B gnumðdbi;qj;GTÞ

where B is the set of databases selected by the ideal

choice. Given k test queries q1; q2; . . . ; qk, P is computed

by the expression P ¼ ð1=kÞ
Pk

j¼1 Pj.
Fig. 13(a) and (b) shows the performance of the

database selection using two hybrid estimation methods

against the number of databases to be selected (M) for

D ¼ 3 and 6. The performance of a random database

selection, which selects arbitrary M databases out of S
databases, was used as the baseline reference for com-

parison. Our proposed techniques always outperform

the random database selection and MRA yields better

performance than SRA in these figures.

In addition, we examine the accuracy of the database

selection by comparing two proposed methods with the

optimal one. Fig. 14 shows the result size of the global

queries estimated for each database. MRA is better than
SRA, when D ¼ 3, 6 respectively.

Table 7 shows the volume of the hyper-sphere with

center ð0; . . . ; 0Þ and radius 1, the total volume of the

hyper-rectangle(s), the total-in-volume (¼ sum of the

volumes of hyper-rectangles within the hyper-sphere)

and the total-in-volume ratio(¼ the total-in-volume/the

volume of the hyper-sphere) for SRA, MRA in case of

D ¼ 3 and 6, respectively. We can observe that MRA
shows better performance than SRA since MRA has

higher total-in-volume ratio than SRA. But the accuracy

of MRA and SRA degrades as the dimension of image

features increases. This is the natural result because

the total-in-volume ratio between the hyper-rectangles

and the hyper-sphere decreases as the dimension in-

creases.

Fig. 13. Performance of methods: (a) ranking order error and (b) relative performance.

Fig. 12. Scatter-diagram of color features for whole data set and the samples. Scatter-diagram of (a) whole data set and (b) the samples.
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5.3. Storage and time requirement of the metadatabase

The size of the metadatabase largely depends on the

number of sample objects fetched from image databases

and the size of database histogram information. For

each database, the size of the statistical metadata ranges

from 96 bytes for three dimensional image features to

144 bytes for six dimensional ones since they consist of

the mean, the standard deviation, the correlation coef-
ficient of global and local similarity values of sample

objects for transforming the global similarity threshold

to local one, and the mean, the standard deviation of the

feature set for constructing the database histogram in-

formation. The storage requirement of the database

histogram information depends on the number of DCT

coefficients. In our experiments, we use 2012 DCT co-

efficients in three dimension or 2499 DCT coefficients in
six dimension. The size of the database histogram in-

formation is 2012� 8 bytes (16 kbytes) in three dimen-

sion or 2499� 8 bytes (20 kbytes) in six dimension.

Using the progressive query-based sampling ap-

proach, we collected sample images from each database.

The SR for each database is described in Table 8 when

the number of retrieved and randomly selected sample

objects for each range query, d, is variable (i.e., d is 10%
of retrieved objects for a range query) and the small

range size 0.01 is used. Each sample image is stored as a

feature vector in the metadatabase. The size of the fea-

ture vector depends on the type of feature extraction

method used by the application. In our study, the size of

the color or the texture feature vector is 12 bytes in three

dimension or 24 bytes in six dimension, and 30 bytes for

index information and 42 bytes for header information.
When we use the average color in three dimension as the

image feature, the size of global and local feature vectors

of sample images is at most ð42 bytes� 155 images

ð1:56%Þ þ 42Þ � 2 bytes (13 104 bytes). The total storage

requirement of metadatabase with just one registered

database ranges from 28.6 kbytes in three dimension to

36.8 kbytes in six dimension. The storage required by

the metadatabase is less than 1% of the size of the image
database. The more databases are registered to the

metaserver, the more sample images are added. The size

of the metadatabase will increase as follows:

growth factor

¼ sizeðhistogram informationÞ � jDBj þ sizeðfvsampleÞ
DBSize

ð14Þ

where DBSize is the storage space for all registered

databases and fvsample is feature vectors of all sample

images and jDBj is the number of image databases.

Table 9 shows the construction costs and the selec-

tivity estimation costs of the database histogram infor-

mation. It contains actual timings taken for two

different sizes of input data(the sample size S ¼ 4000
and 8000) and different values for the space (D, the

number of DCT coefficients in three and six dimensions)

allocated to the histogram information. We performed

the cost evaluation on an HP Netserver and averaged

the results of five runs. These timings do not include the

time taken to extract feature vectors from sample ob-

jects and to compute the statistics of them. The con-

struction cost of histogram information for SRA only

Fig. 14. Global query result size (a) for D ¼ 3 and (b) for D ¼ 6.

Table 8

Sample ratio for each database

1 2 3 4 5 6 7 8 9 10

DBSize (Mbytes) 94.1 72.7 72.6 66.9 233 580 66.9 175 66.9 72.7

Sample ratio (%) 1.1 0.79 1.6 1.1 0.9 0.84 1.1 1.56 1.1 1.47

Table 7

Volumes of the hyper-sphere and hyper-squares for SRA and MRA

Sphere

volume

Total

rectangle-

vol

Total-

in-

volume

Total-

in-volume

ratio (%)

SRA D ¼ 3 4.19 4.19 3.53 84.2

D ¼ 6 5.17 5.17 3.49 67.5

MRA D ¼ 3 4.19 5.45 4.08 97.4

D ¼ 6 5.17 7.72 4.26 82.5
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includes the computing time of DCT coefficients. In

addition to computing time of DCT coefficients, we have

to consider the generation time of approximated

rectangles to evaluate the total construction cost of
histogram information for MRA. Even though the

generation time is relatively long, the generation is

performed only one time in the preprocessing phase. The

more the number of DCT coefficients, the larger

the construction cost is. The experiment also shows that

the number of sample objects has little effect on the time

taken for constructing the histogram information. We

note that construction costs of histogram information
are reasonable and have no difference between SRA and

MRA. As can be seen from Table 9, the selectivity es-

timation costs are much smaller than the construction

costs of database histogram information.

6. Conclusions

In this paper, we have investigated the database se-

lection from a large number of image databases on the

Web. To solve the problem, we proposed a new hybrid

estimation method, which can accurately estimate the

number of result objects, globally similar to a given

query, from image databases with different similarity

measures. It uses the database histogram information

which provides the spherical selectivity estimation, and a
small number of sample objects which compensate for

the selectivity difference between the metaserver and

each image database.

The database selection mechanism has been imple-

mented within the metaserver. The metaserver requires

low storage to store the summary information of each

image database since the hybrid estimator uses a small

number of sample objects and the small size of com-
pressed histogram information. As a further advantage,

the metaserver can keep the up-to-date information of

image databases by using the linearity property of DCT

coefficients even though the content of image databases

are frequently updated.

We have performed a series of experiments with a

large number of real image data and examined the

retrieval effectiveness of the proposed method. Our

method has shown a sufficient accuracy to select rele-
vant databases with respect to a query. As a future

work, we plan to extend our work to the collection fu-

sion of heterogeneous image databases for range que-

ries.
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Appendix A. Proofs of Lemma 2, Lemma 3, and Theo-

rem 1

In the area of mathematical statistics, if the size of the

collection, from which the sample is chosen, is finite but

large enough compared to that of the sample, the limit

notation can be used as a standard practice (Hogg and

Craig, 1978).

Lemma 2. For every fixed � > 0, limn!1 Probfjlselsample;n

ðdbi; q; xÞ� lselðdbi; q; xÞj < �g ¼ 1:

Proof. Let oij be the jth object of dbi. X1 ¼
simlocaliðq;oi1Þ;X2 ¼ simlocaliðq;oi2Þ; . . . ;Xn ¼ simlocaliðq;oinÞ
are a set of random samples of size n from the cumu-

lative distribution F ðxÞ ¼ lselðdbi; q; xÞ of a query q. x is

a threshold. We define Fnðx;X1;X2; . . . ;XnÞ as FnðxÞ ¼
lselsample;nðdbi; q; xÞ ¼ jT j=n; where T ¼ foijjsimlocaliðq;
oijÞP x; j ¼ 1; . . . ; ng. Then FnðxÞ is a random variable
and its distribution is as follows:

Prob FnðxÞ
�

¼ j
n

�
¼

n

j

� �
½F ðxÞ�j½1� F ðxÞ�n�j;

j ¼ 0; 1; . . . ; n

Table 9

Construction and evaluation costs of database histogram information

Histogram information Time taken (ms)

Three dimension Six dimension

S ¼ 4000,

D ¼ 2012

S ¼ 8000,

D ¼ 2012

S ¼ 8000,

D ¼ 4000

S ¼ 4000,

D ¼ 2499

S ¼ 8000,

D ¼ 2499

S ¼ 8000,

D ¼ 4501

SRA

Construction 1970 2580 4830 2080 2690 5050

Selectivity estimation 50 60 60 110 110 110

MRA

Generation of approximated rectangles 49 164 93 450

Construction 1970 2580 4830 2080 2690 5050

Selectivity estimation 110 110 110 170 170 170
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The mean and the variance of its distribution is derived

as follows:

E½FnðxÞ� ¼ F ðxÞ; Var½FnðxÞ� ¼ F ðxÞ½1� F ðxÞ�=n
From the Chebychev inequality (Hogg and Craig, 1978),

ProbfjFnðxÞ � F ðxÞjP �g6 Var½FnðxÞ�
�2

¼ ½F ðxÞ�½1� F ðxÞ�
n�2

If we take the limit, as n becomes infinite, we have

limn!1 ProbfjFnðxÞ � F ðxÞjP �g ¼ 0. �

Lemma 3. For every fixed � > 0, limn!1 Probfjgselsample;n

ðdbi; q;EðyjxÞÞ� gselðdbi; q;EðyjxÞÞj < �g ¼ 1:

Proof. Y1 ¼ simglobalðq; oi1Þ; Y2 ¼ simglobalðq; oi2Þ; � � � ; Yn ¼
simglobalðq; oinÞ are a set of random samples of size n from
the cumulative distribution GðEðyjxÞÞ ¼ gselðdbi; q;
EðyjxÞÞ of a query q, where EðyjxÞ ¼ âaþ b̂bx. EðyjxÞ is a
threshold. We define GnðEðyjxÞÞ as
GnðEðyjxÞÞ ¼ gselsample;nðdbi; q;EðyjxÞÞ ¼ jZj=n

where Z ¼ foijjsimglobalðq; oijÞPEðyjxÞg. Then we can
prove that GnðEðyjxÞÞ converges to GðEðyjxÞÞ as in the

proof of Lemma 2. �

Theorem 1. Let L ¼ fðx;EðyjxÞÞjEðyjxÞ ¼ âaþ b̂bxg. For
any threshold point ðx;EðyjxÞÞ 2 L and every fixed
� > 0; limn!1 ProbfjSSCi;nðdbi; q;EðyjxÞÞ � PSCiðdbi; q;
EðyjxÞÞj < �g ¼ 1.

Proof. It is given that SSCi;nðdbi; q;EðyjxÞÞ ¼
GnðEðyjxÞÞ � FnðxÞ and PSCiðdbi; q;EðyjxÞÞ ¼
GðEðyjxÞÞ � F ðxÞ. We are to prove that limn!1 Prob�
fjSSCi;nðdbi; q;EðyjxÞÞ � PSCiðdbi; q;EðyjxÞÞj < �g ¼ 1

for every � > 0. Now

ProbfjSSCi;nðdbi; q;EðyjxÞÞ � PSCiðdbi; q;EðyjxÞÞjP �g
¼ Probfj½GnðEðyjxÞÞ � FnðxÞ�
� ½GðEðyjxÞÞ � F ðxÞ�jP �g
¼ Probfj½GnðEðyjxÞÞ � GðEðyjxÞÞ� � ½FnðxÞ
� F ðxÞ�jP �g6Probfj½GnðEðyjxÞÞ � GðEðyjxÞÞ�j
þ j½FnðxÞ � F ðxÞ�jP �g6ProbfjGnðEðyjxÞÞ
� GðEðyjxÞÞjP �=2g þ ProbfjFnðxÞ

� F ðxÞjP �=2g6 Var½GnðEðyjxÞÞ�
ð�=2Þ2

þ Var½FnðxÞ�
ð�=2Þ2

¼ 4½GðEðyjxÞÞ�½1� GðEðyjxÞÞ�
n�2

þ 4F ðxÞ½1� F ðxÞ�
n�2

(by Lemma 2 and 3). If we take the limit, as n becomes

infinite, we have

lim
n!1

ProbfjSSCi;nðdbi; q;EðyjxÞÞ � PSCiðdbi; q;EðyjxÞÞjP �g

¼ 0: �
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